Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord
نویسندگان
چکیده
Dexmedetomidine is a highly specific, potent and selective alpha(2)-adrenoceptor agonist. Although intrathecal and epidural administration of dexmedetomidine has been found to produce analgesia, whether this analgesia results from an effect on spinal cord substantia gelatinosa (SG) neurons remains unclear. Here, we investigated the effects of dexmedetomidine on postsynaptic transmission in SG neurons of rat spinal cord slices using the whole-cell patch-clamp technique. In 92% of the SG neurons examined (n = 84), bath-applied dexmedetomidine induced outward currents at -70 mV in a concentration-dependent manner, with the value of effective concentration producing a half-maximal response (0.62 microM). The outward currents induced by dexmedetomidine were suppressed by the alpha(2)-adrenoceptor antagonist yohimbine, but not by prazosin, an alpha(1)-, alpha(2B)- and alpha(2C)-adrenoceptor antagonist. Moreover, the dexmedetomidine-induced currents were partially suppressed by the alpha(2C)-adrenoceptor antagonist JP-1302, while simultaneous application of JP-1302 and the alpha(2A)-adrenoceptor antagonist BRL44408 abolished the current completely. The action of dexmedetomidine was mimicked by the alpha(2A)-adrenoceptor agonist oxymetazoline. Plots of the current-voltage relationship revealed a reversal potential at around -86 mV. Dexmedetomidine-induced currents were blocked by the addition of GDP-beta-S [guanosine-5'-O-(2-thiodiphosphate)] or Cs+ to the pipette solution. These findings suggest that dexmedetomidine hyperpolarizes the membrane potentials of SG neurons by G-protein-mediated activation of K+ channels through alpha(2A)- and alpha(2C)-adrenoceptors. This action of dexmedetomidine might contribute, at least in part, to its antinociceptive action in the spinal cord.
منابع مشابه
Changes in synaptic transmission of substantia gelatinosa neurons after spinal cord hemisection revealed by analysis using in vivo patch-clamp recording
BACKGROUND After spinal cord injury, central neuropathic pain develops in the majority of spinal cord injury patients. Spinal hemisection in rats, which has been developed as an animal model of spinal cord injury in humans, results in hyperexcitation of spinal dorsal horn neurons soon after the hemisection and thereafter. The hyperexcitation is likely caused by permanent elimination of the desc...
متن کاملActions of norepinephrine and isoflurane on inhibitory synaptic transmission in adult rat spinal cord substantia gelatinosa neurons.
Volatile inhaled anesthetics and nitrous oxide (N2O) are often used together in clinical practice to produce analgesia. Because the analgesic effect of N2O is, at least in part, mediated by norepinephrine (NE) release in the spinal cord, we examined the interaction between isoflurane (ISO) and NE in the adult rat spinal cord with respect to central nociceptive information processing. The effect...
متن کاملNorepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 2): effects on somatodendritic sites of GABAergic neurons.
BACKGROUND It has been reported previously that norepinephrine, when applied to the spinal cord dorsal horn, excites a subpopulation of dorsal horn neurons, presumably inhibitory interneurons. In the current study, the authors tested whether norepinephrine could activate inhibitory interneurons, specifically those that are "GABAergic." METHODS A transverse slice was obtained from a segment of...
متن کاملAction of isoflurane on the substantia gelatinosa neurons of the adult rat spinal cord.
BACKGROUND Although isoflurane, a volatile anesthetic, can block the motor response to noxious stimulation (immobility and analgesia) and suppress autonomic responsiveness, how it exerts these effects at the neuronal level in the spinal cord is not fully understood. METHODS The effects of a clinically relevant concentration (1 rat minimum alveolar concentration [MAC]) of isoflurane on electri...
متن کاملLidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons
BACKGROUND Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary af...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European Journal of Neuroscience
دوره 27 شماره
صفحات -
تاریخ انتشار 2008